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Abstract

ii

The performance bounds of a passive acoustic array operating in a
turbulent medium with fluctuations described by a von Karmdn spectrum
are investigated. This treatment considers a single, monochromatic,
spherical-wave source and a line-of-sight propagation path. The
Cramer-Rao lower bounds of the wave-front angles of arrival are
calculated for an unknown parameter set which includes the propagation
distance, turbulence parameters, source phase, and signal-to-noise ratio.
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1.

Introduction

The Cramer-Rao lower bounds (CRLBs) of the angle-of-arrival (AOA)
estimates for a plane wave incident on a passive sensor array were
investigated in Refs. [1,2], herein refered to as the PW Papers. In the PW
Papers it was assumed that the wave had propagated through
atmospheric turbulence with fluctuations described by a von Karmén
spectrum. The received signal was modeled as a complex Gaussian
random variable with a non-zero mean. For simplicity, a single
monochromatic source and a line-of-sight propagation path were
assumed. The technique was based on that of Wilson [3], which followed
the general frame work of Song and Ritcey [4].

The present paper is a logical continuation of Refs. [1,2], but for an
incident spherical wave. The theoretical model of Refs. [1,2] is used, with
the appropriate changes made for a spherical wave. The CRLBs of the
azimuthal and elevational AOAs are calculated. The propagation distance
signal-to-noise ratio (SNR), turbulence parameters, and phase of the
source are also treated as unknown parameters. As the estimates of the
AOAs will degrade when they are simultaneously estimated with other
parameters, the couplings between the estimates of the AOAs and the
estimates of the other parameters are also calculated.

£

The paper is ordered as follows: The theoretical model is discussed in
section 2 and CRLBs are formulated and discussed in sections 3 and 4. The
numerical results and concluding remarks are given in sections 5 and 6,
respectively. Tables of the acronyms and symbols are given in appendix A.




2. Theoretical Model

2.1 Signal Model

The theoretical model for the probability density function (PDF) of a
spherical wave that has propagated through atmospheric turbulence is
outlined in this section. The following notation shall be used throughout
this paper: [-]" denotes the complex conjugate, []* the transpose, [T the
Hermitian adjoint (complex conjugate transpose), (-) the ensemble
average or expectation value, and []" and []* the vector components
parallel and transverse to wave propagation, respectively.

Consider an array with N sensors. The total received signal at each sensor
is taken to be the sum of the wave that has propagated from the source of
interest and from noise. Both contributions are time dependent. The total
received signal s may be written as a column vector with NV elements, one
corresponding to each sensor,

where p is the wave that has propagated from the source with azimuthal
and elevational AOAs ¢ and 6, respectively, and where n is the noise. It is
assumed that the noise at the sensors are mutually uncorrelated and that
the noise has a complex Gaussian distribution with zero mean and
variance o2 at each sensor. Exact solutions for the pressure field of the
source and its PDF are not known, but solutions to its moments are.
Therefore, it is approximated that p is complex Gaussian distributed with
mean p and covariance matrix C,,

pi = (p;) and [Cp]ij = <pip;> - Nili; . (2)

The moments are determined from the results in the open literature for
acoustic wave propagation in a moving random medium as discussed in
the following section. We assume that p and n are uncorrelated so that the
total signal s is Gaussian distributed with mean p and covariance

C=C,+0olly. (3)

This signal model, in which the real and imaginary parts are Gaussian
random variables with equal variances, is reasonable for strong or weak




scattering in the presence of strong diffraction (the Rytov extension
region). It is less well suited to situations where both scattering and
diffraction are weak (geometric acoustics), in which case the phase
variance dominates the signal behavior [8].

2.2 First and Second Moments

The pressure field associated with a sound wave propagating in a moving
random medium is characterized by a closed set of fluid dynamic
equations. The small-angle parabolic and Markov approximations may be
used to obtain the statistical moments of the sound field in closed form.
These approximations are valid in far field, for small scattering angles,
and for £ 3> X > ¢, where X is the wavelength, and £ and ¢ are the outer
(integral) and inner (Kolmogorov) length scales of the turbulence,
respectively. We use the solutions for the first and second moments of the
pressure field as given by Ostashev [5], who generalized the results in
Refs. [6,7] to include fluctuations in the medium velocity. The solution for
the second moment is, however, valid for normal incidence across two
Sensors.

2.2.1 Normal Incidence

Consider a sound wave that is propagating with wave number k = £&,,
k =27 /A, where X is the wavelength of the source. Let the observation
pointber; = [z, v, %", sothatz > R; = (y2 + 22-2)1’/ % From Ref. [5], the
first moment at r; for an incident spherical wave is

i = py (r;) e 7" 4)

where 1 is the extinction coefficient for the first moment and pu is the
sound field in the absence of random inhomogeneities
A’?‘g

pu(r) =pie®, p;= o Pi=kritx, ()
%

where x is the phase of the source, A is the pressure at r; = ro (A and 7
are real-valued constants).

The small-angle approximation (SAA), [i.e., parabolic approximation], for
a spherical wave propagating in free space is simply the Taylor series
expansion up to first order in 1/z
kR?
x ) ©)

exp (1kr;)

1 !
~ —exp (ikz)exp (i
x

i




Consider now the observation points r; = [z, y;, z)T and
r; = [z, yj, Zj]T, so that z > R;, R;. From Ref. [5], the second moment for
normal incidence across sensors i and j is

(pivt) = pu (v:) P} (r;) e P7, @)

where p;; = r; — r; is the sensor separation vector (transverse to the
propagation direction), a is the extinction coefficient for the second
moment, and py (r; ;) are given by the parabolic approximation
[equation (6)]. The extinction coefficients for the first and second moments
are related by

v = a(o) /2. ®)

2.2.2 Oblique Incidence

We now wish to derive approximate expressions for the first and second
moments for oblique incidence. Let the vector from the center of the array
to the source be r = r#. The azimuthal and elevational AOAs, ¢ and 6, are
measured with respect to the center of the array, so that

f = [cos @ cosb, sin@cosh, sin 0", Letr, = [z, ¥, zg]T be the vector from
the center of the array to the ith sensor, r; =r — r; be the vector from the
ith sensor to the source, and p;; =r; —r; = rg- — r} be the vector between
the jth and ith sensors. An illustration is given in figure 1. (When
comparing results between the plane-wave case and the spherical-wave
case, keep in mind that in this paper and in Ref. [2], € is the elevation,
whereas in Ref. [1], 8 is the declination and &' is the elevation.)

For oblique incidence, we must take care in deriving approximations for
the moments. A consistent treatment of both the phases and attenuations
of the moments is necessary to ensure that the covariance matrix C,, is
non-singular. For normal incidence, the second moment is calculated
using the SAA, where py (r;) is approximated by expanding about r) up to
first order in 1/r. For oblique incidence, we expand py (r;) about 7 up to
first order in 1/r. In doing so, we assume that the attenuation of the wave
across the array is constant and may be approximated by that at the array
center. Therefore for py (r;) = p; exp (i®;), we approximate

_ .A’I'o — .AT()

N — =Dpo 9)
T r

Di

12 e /.2
S, =x+krirx+Ek r——f'-ré-&ri—ﬁi

2r (19)

For the first moment at the ith sensor, we approximate that the attenuation
of the wave due to the random medium is also constant across the array




Figure 1. Coordinate system. The closed circles represent the sensors and the open circle
represents the source. The azimuth, ¢, and elevation, 8, are defined with respect to F.

and may be approximated by that at the array center. Thus
pi = poe'ie T 11
where ®; is given by equation (10).
The second moment for oblique incidence we approximate to be
<pipj> ~ paeiPuealpi)r 0 =d; — 95, (12)

where again @; is given by equation (10). We are thereby assuming that for
every i and j,

1 )
a(pij) = alpij) - (13)
The factor of r in the attenuation term due to the medium is necessary to
ensure consistency between the moments. In other words, as

[Cphj = <p§p;> — <pl> <p;‘> = Pg [e—a(;osj)?‘ _ 6—2%} i (14)
in the limit p;; — oo,
{Cph‘j _ p{% [e—‘_?‘;’r o 8—2'}‘?“} eiq).ij — 07 (15)

as it should. Because of these approximations, we limit our investigation
to nominally normal incidence at a planar array.

We define the ij-element of the mutual coherence function (MCF) matrix
to be the positive square root of

2 _ (Pip})(pipi)
{piv)(psp})

rZ = (16)




For the treatment here,

Ti; = | {pip}) | /9§ = e i)™, (17)

The minimum value of the MCF occuring for p;; = 00 is I'yin = e~ 2. We
define a vector of the phases

s= [ei<I>1’ ei¢>2, e ei<I>N]T (18)

and the matrix
S=s5®s! (19)
Sij = exp (i(Pij) y (20)

where ® is the (right) Kronecker product. We may then write
p=plys (21)
Cp= p%I‘ 0s- pgr\mins ) (22)

where @ is the Hadamard product (element-by-element multiplication).
This mathematical expression is useful for computational purposes. As we
are approximating that the attenuation of the sound wave is constant
across the array, we may think of sand S as a steering vector and a
steering matrix that involve only the phases of the wavefront.

2.3 Turbulence Model

The extinction coefficients depend on the structure of the random
medium. For an incident spherical wave the extinction coefficient for the
second moment [5,9,10] is

a(p) = 27k /0 F(0) — f(pu)] du, (23)

where f is the two-dimensional (2D), or projected, correlation function for
the sound speed fluctuations. For most random media, including
turbulence, a (p) initially increases monotonically with increasing p, but
when p exceeds L, a (p) asymptotically approaches a constant value. Since
f (p) — 0in the limit p — oo, this constant value is simply 2v, given by

2y = 2xk%f (0) = 26%K2L (24)

where ¢? is the index of refraction variance. Hence the second moment
initially decreases with increasing p and eventually “saturates” at a fixed
minimum value. Note that this limit [equation (24)] is the same for both an




incident spherical wave [equation (23)] and an incident plane wave
[equation (15) of Ref. [1]].

The performance of atmospheric acoustic sensor arrays that have a sensor
spacing larger than the height of the array from ground is affected by the
large eddies of the energy-containing (or source) subranges of the
turbulence spectrum. The isotropic, homogeneous von Karman turbulence
model describes the inertial subrange of the turbulence spectrum more
realistically than the commonly used Gaussian models, and it still behaves
reasonably in the energy-containing subrange. The von Karman form for
the 2D correlation function is dependent upon the source of the sound
speed fluctuations: a scalar field is induced by temperature or humidity
fluctuations and a vector field is induced by wind velocity fluctuations.
The 2D correlation functions for a scalar field f, and a vector field f,, may
be written in the form (see equation (49) in Ref. [10] and equation (7.112)
in Ref. [5])

2621

fs (P, '§253> = m <2%)5/6 Ks,/ﬁ ('[;) (25)

Bt = 2 (2 (D) - e ()] o

where [ = I'(1/3) £/ [/#T (5/6)] is a characteristic length scale, T () is the
gamma function, and K, (z) is the modified Bessel function of order v.

The MCF for an incident spherical wave is plotted in figure 2 as a function
of the index-of-refraction variance, <2, and the characterstic length scale
normalized by the wavelength, I/}, for both a scalar and a vector von
Kérman spectrum. In presenting the results, it is natural to use normalized
length scales, (e.g., 7/, d/), etc.), as then the coherence has no explicit
wavelength dependence. In (a) and (b) the MCFs are calculated for

p/A = 0.5 and r/\ = 500. The coherence for both spectra decreases
significantly in the regions where the index-of-refraction variance is large,
¢2 ~ 1074, and the normalized characteristic length scale is small,

10 < 1/A < 1. (The MCF is actually dependent upon the product ¢2r/);
therefore, the z-axis alternatively represents an increase in /) for fixed
%) In (c) and (d) the same is calculated but for p/A = 3/V2. The larger
sensor separation leads to a more rapid decrease in the MCFs as functions
of the turbulence parameters. For both sensor separations the MCF for the
vector spectrum is more sensitive to the changes in the turbulence
parameters, and its minimum with respect to the turbulence parameters
(for a fixed finite sensor separation and normalized propagation distance)
is smaller than that for the scalar spectrum.

In order to compare the results to those of the PW Papers, the same has




(@) p/A=0.5 (b) p/A=0.5

Figure 2. Coherence for an incident spherical wave: (a) and (c) are for a scalar von Kdrmén
spectrum; (b) and (d) are for a vector von Karman spectrum. All calculations are for r/A =

500.

been plotted in figure 3 but for an incident plane wave. Note that the MCF
for the spherical wave is larger than that of the corresponding plane wave.
Therefore, based on the results from the PW Papers, we expect that the
CRLBs of the AOAs for an incident spherical wave should be smaller than
those for the corresponding plane wave.

The function 'y, (the minimum value of the MCF as a function of sensor
separation (p = oo) for fixed propagation distance and fixed turbulence
parameters) is the same for both a scalar and a vector spectrum and for
both a plane wave and spherical wave. It is plotted in Fig. 4. Even though
its value is only dependent upon the product ¢*rl/A?, it is plotted versus
the turbulence parameters at r/A = 500 for ease of comparison with
figures 2 and 3.




(a) p/L=05 (b) p/h=0.5

i 3

Figure 3. Coherence for an incident plane wave: (a) and (c) are for a scalar von Karman

spectrum; (b) and (d) are for a vector von Karméan spectrum. All calculations are for r /A=
500.

I'min

(;- 1 O‘S 10 18
Figure 4. Minimum coherence (p = o0) for von Kdarman spectra, T'min = 727", Calculation
is for r/A = 500.




3. Formulation

31 CRLB

10

The CRLB is calculated from the Fisher information (FI), which is
dependent upon the PDF. Having completed the theoretical model of the
PDF, we now proceed to formulate the FI.

Consider the vector of real parameters ® = [0, Oz, ..., © N]T that are to
be estimated. The FI for real parameters of a complex Gaussian probability
likelihood function with covariance matrix C and mean g is [11]

_,0C _,0C out ., Op
_ 1 1 1
JAV—Mtr(C 3 )\C 3 V>+2M§R (3 /\C 3 V) , (27)

for M independent and identically distributed data sets. If there are N
sensors in the array, C is an N x N matrix and p is a column vector of

length N. Let us use the convention that A, v € (1, 2, ..., N]are the
indices on the parameters and i, j € {1, 2, ..., N] are the indices on the
sensors.

Let us define o, = 1/[J~1],,. We loosely refer to either o or o2 as the
CRLB, as the meaning should be evident from the units involved. The
minimum value of o2 is a,,o =1/Ju., (i.e., the CRLB when ©, is the only
unknown). As the number of unknowns increases, o2 will increase.

For example, suppose that there are two unknowns. For A and v cyclic
(e.g., if \ =1thenv = 2),

2 1 o 1
28
I N N oD (28)
where
(2 = Ji 0< (2 <1 (29)
12_J11J22’ <C2<1.

Only if Ji2 = 0 does aA = a,\ , and the estimates of ©; and ©- are said to
be uncoupled. As (;2 increases, 0'/2\ increases from its minimum value of
0%, and a degradation of the estimates of ©; and ©; results. The quantity
(12 thus provides a measure of the strength of the coupling between, and
hence degradation of, the estimates of ©; and ©s: if { = 0, the estimates




are uncoupled and the CRLBs retain their minimum values; if (12 < 1, the
estimates of 6, and 6 are weakly coupled and the CRLBs increase only
slightly; and if (12 = 1, the estimates are fully coupled, the CRLBs are
infinite, and hence neither ©; nor ©, can be estimated. It is therefore
advantageous to determine the conditions under which the estimates of
O; and O, will decouple.

If there are more than two coupled parameter estimates, we define the
coupling between the Ath and vth parameter estimates to be

J2
CAU = A

= T (30)

In this way, we have a measure of the coupling strength between any two
given parameters.

3.2 FI of Theoretical Model

We write the elements of the mean vector as

pi = poe "el® = poIl/2 i%i (31)

and of the total covariance matrix as
2 ; o2
Cij = pp { [e_“(péj)r - 6_271 i 4 p—;&j}
)

¥ Gg
= pq }:(Fij ~ Timin) €% + ;3—5@} ’ (32)
0

where ®;; = ®; — ®; and ®; is given by equation (10).

The signal-to-noise ratio is related to the noise variance by SNR = p2/o2.
It is often useful to express the SNR in decibels SNRyg, SNR = 10SNRan/10_
For a spherical wave py is dependent upon 7; therefore, we consider SNRy,
the signal-to-noise ratio at a distance R, as the unknown. Then
o = (Arg)?/(SNRoR?). By renormalizing the FI by (Aro)?, the explicit

. value of Ary is not needed.

The FI may now be readily calculated from equation (27) for those
parameters we wish to consider as unknowns: ¢, 8, v, r, [, ¢2, and SN Ry It
was shown in the PW Papers that the source phase y must be treated as an
unknown parameter when a non-zero mean is considered; therefore,
must be treated as an unknown for the spherical-wave case as well. For
brevity, the derivatives of the covariance matrix and mean with respect to
the unknown parameter set are not presented here.
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Due to scale discrepancies between the contributions to the FI matrix,
numerical difficulties may arise when trying to invert J. As in the PW
Papers, we construct a diagonal matrix D, whose elements are the inverse
of the square-root of the diagonal elements of the FI matrix,

D,, = ,\—Vl/ 25 \v- The CRLBs of the unknown parameters may then be
determined from

<(@V . éu)2> - [D (DID)™! D] n (33)

The matrix DJD may be inverted by standard numerical techniques.




4. Discussion

4.1 No Turbulence
Let us begin by examining the case of no turbulence.

411 Full SW
In the absence of turbulence, not considering the SAA for the moment,

o= [pjei@f‘, pgeiq}z, feey pg\rei@N] and C= G’EIN : (34)

The elements of the FI matrix are

S _MN 902 902 2M |
YT ol 98,08, " of &

7

0®; 99, Op; Ip;
2 2 1
(p" 90,00, ' 90, ae,,) - 9

Suppose that ¢, 8, and x are unknown. The elements of the FI are

N N 2
2M A2E2rgr? A%\ [0 (F - 1)
Jos = — B 3 : 36
o= 2 (S ) M5 oo
N 9
2M <~ [ APkEEr? A%e2r2\ [0 (f - rj)]”
= 7
o i ( r} " ry ) 98 7
N
2M A%r?

Joy = =0 38
XX 6-321 Pt ?,%2 ( )
N 252,22 2.2.2 P -

2M A k*rgre  Afrgre\ 0(F-r}) 9 (F-rf)
Joo = L 0 : : 39
0T g2 ;( rd T rd ) ¢ 00 (39)
N
2M <~ A%krdr 8 (¢ - 1))
D D s (40)
=1 t
(41)

N .
2M A2kr2r 0 (& - 1)
Jox = ——3 Z 73 =,

no;_1 I @6
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where

#-r} = 2} cospcosf + ysin pcosf + z;sinf (42)
A . ’

59—(—I(;;—q;#):—;z';sin<;5cose+yécosgz&cose (43)
. /

% = —r! cos¢sinf — ysinpsin@ + 2} cos . (44)

For the estimates to decouple, the off-diagonal elements must be zero.
Substituting equations (42)-(44) into equations (39)-(41) we find

oM 22,22 2,22
Jpp = — Z (A 47‘01“ + .A:gr ) [(xiz - yl'-2> cos ¢ sin ¢ cos f sin 6
In =1

T3 i

+ iy} (sin? ¢ — cos® @) cos Osin 6 — z}z] sin ¢ cos® 0 + y 2! cos ¢ cos? 0] (45)

oM & A2kr2r (z! sin ¢ cos @ — y] cos ¢ cos h)

Jgy = — L 46
[5G 0_721 p T? ( )
N
2M A%kr2r (x) cos psin + y! sin psin b — z] cos )
Jox = —5 > 0 < : (47)

n =1 t

Thus in order for the estimates of ¢ and 8 to decouple from the estimate of
x, for every ¢ and 6, we must have

i=1 i=1 =1

P
YA

=0. (48)

%olﬁ\
.
R

Therefore, unlike the PW case, there is no simple array geometry that will
result in the decoupling of the estimates of the AOAs from the estimate of
the phase angle. The conditions for the estimates of ¢ and 6 to decouple
are also, in general, unattainable in practice:

N N

I | K1
ol (74 N F) —S (_4 N E) (49)
; i i i

i=1 i ? =1 Ti
N N N
k2 1 k21 k21
71 70 _ ! 7! —_—
E T3y (F + ;g) = E Tz (ﬁ + ﬁ) = E YiZi (;g + r_f‘) =0. (50)
i=1 g i i=1 t t i=1 t ?




Suppose now that r is also unknown. Then

I — 2521 N <,,42}i2r§ N ,42?) (4 rg)g (51)
on = ] T

Jrg = —Mg é (AQ?S? - AZ??) (r+%-1) %ﬂ;—} (52)

B %Z AQMO 1 Eor) . (54)

E’Lz_

Because of the factor 7 in the second term in parenthesis, we see that the
estimate of r will always be coupled to the estimates of ¢, 8, and ,
regardless of array geometry.

Also note that none of the elements of the FI given in equations (36)—(41)
or (51)~(54) is dependent upon the value of . This is expected as the value
of the source phase should not effect the estimates of the other parameters.
Close inspection of the second term of equation (27) reveals that its

dependence in the FI should cancel regardless of whether we consider
turbulence or not.

412 SAA

Let us now consider results for the parabolic approximation using the

approximations of p; and ®; given in equations (9) and (10). The elements
of the FI matrix are now given simply by

IN o2 802 2MN ¢ 2\1 ®; 0P,
! 00,06, oI 00,00, o2 406,00,
We thus find
2MpRk? & Fr)\ 9(F-r)]?
— 1 3 2
Jos 22 ; +— 7% (56)
5.0 N N 2
2Mpik® Feri\ o(F-r)]"
— 1 2 K3
Jog 2 ; K +— 55 (57)
2M Np?
Jox = 510 (58)

2
Gu




Jrr -

4,2 Turbulence

2M%gk2 é [(1 . f-rr;> 8(2;2)] [(1 N f'-rré) %;@] (60)
s
%é <1 +55) 8(raér2): :1 )] (64)
e - 1 Lo
nooi=t

Notice that the summations on the lowest order terms are the same as
those for the PW case [compare to equations (43)—(48) of Ref. [1]].
Therefore, we can use the results from the PW case to minimize the
couplings.

Again note that none of the elements of the FI given in equations (56)-(65)
is dependent upon the value of x.

Let us now consider propagation through atmospheric turbulence.

42,1 Two-Element Array

16

Consider a circular wave that is received at a two-element array. Suppose
that the sensors are separated by d. In Appendix D of Ref. [1], the Fl is
derived for a 2-element array. The results derived there are also valid for
the consideration here.

Leta = C11, b = |C12|, and ¢'/? = |u1| = |u2|, where p; and Cj; are as
defined in equations (31) and (32). As 9®;/9x = 1V i, from equation (D-9)
of Ref. [1], we know



éX

o 2]@52 3@13 2 2Mec 8@; 2 3@2 2 3@1 @@g
o= () e |(%) *(58) | %5 @

2Mece 5‘@1 3@2
= 7
Jox a+b(5‘¢~+3¢) (67)
4Mec
b= (68)

If 091/9¢ = —0®2/0¢, the estimates of ¢ and x will decouple for any
value of ¢. The CRLB of ¢ is

9 1

o= (69)
¢ Jasszﬁ - Jéx/Jxx
a’ - b?
= = 5 - (70)
M [262 4 ¢ (a + b)] (0®12/09)
Now
2Mck F-r)\ 9(f-r)) F-ry\ O(F-rh)
a+b[(+r> d¢ +<+r> o (71)
2Mck
== +c& i: (J;’l + 3:'2) sin¢ — (yi + yg) cos ¢
2 /22 42 I 10
+ Ty T " 91 % cos ¢sin ¢ + M (sin2 ¢ — cos® gf))} . (72)
In order for Jy, to be zero for every value of ¢ and ¢, the following must
hold
Othorderin 1/ : i =—-z4 and gy} =y (73)
Istorderinl/r:  z\7+2° =y* +44° and oy} = —aly). (74)

The Oth order conditions are those found for the PW. However, only one of
the two 1st order conditions in (74) can hold when (73) holds. Therefore,
the estimates of ¢ and x will always be coupled, but this coupling may be
minimized by satisfying equation (73).
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4.2.2 Planar Array
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(a@m)? g [(1+ f.rg) 91 (1+ i‘--r’2> a(f'-ré)r CRlcse.  (75)

r d¢ T 09
Thus

Mc2kd? cos ¢ sin ¢
Jox = (a+b)r (76)

2 2
_ MT: , kd*sin2¢ 77

2(14T - 207, + 03 /pg) T

Me 27 kd? sin 26 78)

= 2 [1 + e-—-a(d/2)7‘ — 26_277’ + o_%/pg] r .

At normal incidence, ¢ = 0, the coupling is zero. This term decays by at
least e=2"" /7, therefore at large values of r, J4, decays very rapidly. It
follows that

9 a2 _ b2
7 = Mk2d?cos? 6 [202 + c(a + b)) @)
1 -T2 — 20in (1 — Tiin) + 202/P5 (1 — Trmin) (80)

"~ MK?d cos? ¢ [20% — 3T Tmin + Dinin (1 + 02/03)]

This is the same as found for the PW, except that po now hasa 1/r
dependence. Note that the 1st order corrections in the phase term
canceled.

For full three-dimensional (3D) propagation in turbulence, we assume that
the wave is propagating near the z-axis, take the array plane to be the
yz-plane, and take the origin to be at the center of the array. Numerically,
we find: the estimates of ¢, 8, r, and x are all coupled; the estimates ¢ and
6 are uncoupled from the estimates of /, ¢2, and SNRy; and the estimates of
r, ¢, ¢2, and SNRy are all coupled. The results are independent of the value
of x.




5. Results

The array geometry considered for this analysis is a 4 x 4 square grid with
spacing of d. In all figures d/\ = 0.5. As the CRLB (o) for M independent
and identically distributed datasets is 1/v/M times the CRLB for one
dataset, all results are presented for M = 1.

51 CRLB of AOAs

As the estimates of the AQAs are only coupled to the esimates of x, 7/}, ¢,

and ¢, only these four parameters are considered as unknowns in this
section.

Due to the symmetry of the array, the values of o, and oy are the same at
normal incidence. At ¢ = 0, the couplings (4, (s, and Cer/x are all zero.
And at 6 = 0, the couplings (44, (s, and (g, /» are all zero. Therefore, at
¢ =0=0,04 = 09 = 04, = 0go. All the angular couplings increase with
increasing ¢ and 6.

In figure 5, o, for normal incidence is plotted versus ¢/ and ¢? for

r/A = 500 and SNRy = 10 dB at R/A = 500. A scalar von Karman
spectrum is used. The overall values of o, are smaller than for the
plane-wave case (see figure 16 of Ref. [1] or figure 11 of Ref. [2]). This is
expected as the values of the MCF for a plane wave are smaller than for a
spherical wave (refer to figures 2-3 on pg. 9). The same is plotted in
figure 6, but for a vector von Karman spectrum. The ratio cr;‘;) / ag, where
the superscripts refer to the type of spectrum, is plotted in figure 7. As
expected, o, for the vector spectrum is larger than that for the scalar
spectrum. As with the PW case, the use of a non-zero mean reduces the
CRLBs of the AOAs. For other values of ¢ and 6, the behavior of CRLBs of
the AOAs is similiar, with o4 and oy increasing with increasing ¢ and 6.

~ And for other values of the SNR, the behavior is similar.

In figure 8, o, is plotted versus the normalized propagation distance for
normal incidence and a scalar von Karmén spectrum. Two values of <2,
¢/X, and SNRy evaluated at R/\ = 500 are considered. In order to see the
limiting behavior of the model, the graph is extended to include smaller
values of /A than are valid for the turbulence model. At small values of
r/A, we see that o, is dependent upon the values of the turbulence
parameters (particularly ¢?) and is independent of the value of SNRy (as it
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Figure 5. CRLB of azimuth as a function of turbulence parameters for a scalar von Kdrmén
spectrum: normal incidence, 7/ = 500, and SNRo = 10 dB at Ro/A = 500. Due to symme-
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Figure 6. CRLB of azimuth as a function of turbulence parameters for a vector von Kdrman
spectrum. All other parameters same as figure 5.




Figure 7. Ratio of ¢} to ¢ as a function of turbulence parameters. Parameters same as
figures 5 and 6.

should be as SNRy is evaluated at R/ = 500). Note the difference
between the outward spherical wave propagation and the plane wave
propagation depicted in figure 18 of Ref. [1] and figure 13 of Ref. [2].

The same is investigated in figure 9 but for ¢ = § = 15°. While o, has
increased slightly, the behavior is the same. The coupling between ¢ and 8
is in figure 10. For 7 /X = 10, {4 ¢ is dependent upon the values of the SNR
and the turbulence parameters; however, this dependence rapidly
vanishes and ¢, ¢ becomes constant for r/A > 100. Therefore, for values of
7/ that are consistent with the SAA, s, 0 is independent of ¢, /), and
SNRy. Figure 11 depicts the coupling between ¢ and x. For all values of ¢2,
/A, and SNRy, (s , diminishes exponentially with increasing /. The
coupling between ¢ and /X is plotted in figure 12. Again for large values
“of r/A, ¢4, /» diminishes exponentially. The analogous graphs of figures
9-12 for 0 (instead of ¢) have the same behavior.

The behavior of o, and oy, as well as all the couplings, as a function of
propagation distance is the same for a vector von Kdrmén spectrum. The
values of o, and gy are slightly higher. Refering back to figure 10, the
coupling (4 ¢ for a vector spectrum has similar values for /A < 100 and
approaches the same constant for r/A > 100.

The angular dependence of the CRLBS of the AOAs are shown in figure 13
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though smaller values.)
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Figure 10. Coupling between ¢ and 6 as a function of normalized propagation distance.
Parameters same as figure 9.

and the coupling between the AOAs is shown in figure 14 for a scalar von
Kérman spectrum. In 13(a—), s> = 1074, /X = 10, r /X = 500, and

SNRg = 10dB at R/A = r/\. We see the same symmetry in o, as in the
PW case, and oy is again independent of azimuth. (Refer to figures (15-16)
in Ref. [2] and figures (21-22) in Ref. [1].) Not shown are Co,r/aand Cg /3,
which are at most ~ 10712 at ¢ = § = 15°. To within the numerical
accuracy of the calculation, 4 , and (p,,, are both zero. In 13(d-f), all the
parameters are the same except ¢? = 1075, The CRLBs have decreased, as
expected. Here (;, /5, Co, /x> Co,x» Co,x ~ 107% at ¢ = 6 = 15°. The
coupling (4,0 in figure 14 is the same for both cases. In fact, the coupling
between ¢ and 6 is the same (only .02 percent difference) as for the PW
case for all parameters and both spectra when r/A Z, 100. The analogous
results for a vector spectrum have the same behavior.

It is found for all cases, that the use of a non-zero mean reduces the CRLBs
of the AOAs. However, in the regions where the AOAs can be estimated,
this percent difference is small, usually less than two percent. This percent
difference is discussed in detail in Ref. [12] for both an incident spherical
and plane wave.
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5.2 CRLBs of Other Parameters
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For the PW case, it was found [2] that there was not sufficient information
to provide reasonable estimates of the propagation distance and
turbulence parameters. For the spherical-wave model, we again find that
we cannot estimate /), 2, £/, or SNRy. Even when ¢2, ¢/, and SNRy are
not considered as unknowns, /X cannot be estimated.

As the turbulence parameters cannot be estimated from this model, it
follows that they must be calculated from models that consider
meteorological data. There are models based on von Kdrman’s spectrum
that calculate the turbulence parameters in the energy-containing
subrange of the turbulence [9,10]. These models consider contributions to
the sound speed variations from wind and temperature fluctuations
produced by both shear and buoyancy instabilities.




6. Conclusions

We have investigated the Cramer-Rao lower bounds of the wave-front
angles of arrival for a spherical wave propagating through atmospheric
turbulence with fluctuation described by a von Kdrman spectrum. This
investigation is the logical continuation of previous investigations [1,2] for
a plane wave source. Both investigations consider a deterministic mean,
two bearing angles, and multiple unknown parameters. The use of a
spherical-wave model reduces the CRLBs of the AOAs from those of the
plane-wave model due to the change in the mutual coherence function.
The coupling of the estimates of the angles of arrival to the estimates of
the normalized propagation distance and source phase are found to be
minimal, if not completely negligible. And the estimates of the angles of
arrival are decoupled from the estimates of the turbulence parameters and
signal-to-noise ratio. The coupling between the two bearing angles is the
same as for the plane-wave model when the normalized propagation
distance is consistent with the parabolic approximation.

As the estimation of the turbulence parameters does not effect the
estimates of the AOAs, it is logical to extend the calculation of the mutual
coherence function to include contributions from both scalar and vector
spectra. Such a model is considered in Ref. [13], in which the MCF is
calculated from meteorological data.

The significance of scattering by atmospheric turbulence is evident from
the results presented here. In order to understand and circumvent
limitations on U. S. Army acoustical tracking systems, it is necessary to
predict the performance of acoustic sensor arrays for various atmospheric
conditions. This analysis clearly demonstrates the atmospheric conditions
that are unfavorable for accurate acoustical tracking.

This investigation is limited by the model of the second moment for
oblique incidence, as well as the fact that other physical phenomena, such
as ground reflections and refraction by atmospheric wind and
temperature gradients, which have not been included in this analysis, may
have a considerable impact on the ability to estimate the elevation.
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Appendix A. Nomenclature

A.1 Symbols

[y Complex

* Complex conjugate

il

Defined as
Element of
Ensemble average or expectation value

Hermitian adjoint (complex conjugate transpose)

Lo s SR N € 3
S

i

Identity matrix, n x n

et

Imaginary

4

On the order of
Real

- B

Transpose

A.2 Acronyms

AOA Angle of arrival

AOB Angle of bearing

CRLB Cramer-Rao lower bound

FI Fisher information

LOS Line of sight

MCF Mutual coherence function
MLE Maximum likelihood estimator
MSE Mean-square error

PDF Probability density function
PW Plane wave

SAA Small angle approximation

SNR Signal-to-noise ratio
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SW
2D
3D

Spherical wave
Two dimensions or two-dimensional

Three dimensions or three-dimensional
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